Hypothesis Testing: ANOVA (Analysis of Variation)

Portland State University
USP 634 Data Analysis I Spring 2018

Comparing means with ANOVA

Slides developed by Mine Çetinkaya-Rundel of OpenIntro
The slides may be copied, edited, and/or shared via the CC BY-SA license Some images may be included under fair use guidelines (educational purposes)

Source: Jaffe, P. R., Parker, F. L., and Wilson, D. J. (1982).
Distribution of toxic substances in rivers. Journal of the Environmental Engineering Division, 108, 639-649.

The Wolf River in Tennessee flows past an abandoned site once used by the pesticide industry for dumping wastes, including chlordane (pesticide), aldrin, and dieldrin (both insecticides).
These highly toxic organic compounds can cause various cancers and birth defects.

The standard methods to test whether these substances are present in a river is to take samples at six-tenths depth.

But since these compounds are denser than water and their molecules tend to stick to particles of sediment, they are more likely to be found in higher concentrations near the bottom than near mid-depth.

Data

Aldrin concentration (nanograms per liter) at three levels of depth.

	aldrin	depth
1	3.80	bottom
2	4.80	bottom
\ldots		
10	8.80	bottom
11	3.20	middepth
12	3.80	middepth
\ldots		
20	6.60	middepth
21	3.10	surface
22	3.60	surface
\ldots		
30	5.20	surface

Exploratory analysis

Aldrin concentration (nanograms per liter) at three levels of depth.

```
bottom
등
응
을
әэециs
```



```
\begin{tabular}{l|ccc} 
& n & mean & sd \\
\hline bottom & 10 & 6.04 & 1.58 \\
middepth & 10 & 5.05 & 1.10 \\
surface & 10 & 4.20 & 0.66 \\
\hline overall & 30 & 5.10 & 1.37
\end{tabular}
```


Research question

Is there a difference between the mean aldrin concentrations among the three levels?

To compare means of 2 groups we use a Z or a T statistic.

To compare means of 3+ groups we use a new test called ANOVA and a new statistic called F.

ANOVA

ANOVA is used to assess whether the mean of the outcome variable is different for different levels of a categorical variable.
H_{0} : The mean outcome is the same across all categories,

$$
\mu_{1}=\mu_{2}=\ldots=\mu_{k},
$$

where μ_{i} represents the mean of the outcome for observations in category i.
H_{A} : At least one mean is different than others.

Conditions

1. The observations should be independent within and between groups

- If the data are a simple random sample from less than 10% of the population, this condition is satisfied.
- Carefully consider whether the data may be independent (e.g. no pairing).
- Always important, but sometimes difficult to check.

2. The observations within each group should be nearly normal.

- Especially important when the sample sizes are small.
- How do we check for normality?

3. The variability across the groups should be about equal.

- Especially important when the sample sizes differ between groups.
- How can we check this condition?

z/t test vs. ANOVA - Purpose

z/t test

Compare means from two groups to see whether they are so far apart that the observed difference cannot reasonably be attributed to sampling variability.
$H_{0}: \mu_{1}=\mu_{2}$

ANOVA

Compare the means from two or more groups to see whether they are so far apart that the observed differences cannot all reasonably be attributed to sampling variability.

$$
\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{\mathrm{k}}
$$

z/t test vs. ANOVA - Method

z/t test

Compute a test statistic (a ratio).
$z / t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{S E\left(\bar{x}_{1}-\bar{x}_{2}\right)}$

ANOVA

Compute a test statistic (a ratio).

$$
F=\frac{\text { variability bet. groups }}{\text { variability w/in groups }}
$$

Large test statistics lead to small p-values.
If the p-value is small enough H_{0} is rejected, we conclude that the population means are not equal.

Hypotheses

What are the correct hypotheses for testing for a difference between the mean aldrin concentrations among the three levels?
a) $\mathrm{H}_{0}: \mu_{\mathrm{B}}=\mu_{\mathrm{M}}=\mu_{\mathrm{S}}$
$\mathrm{H}_{\mathrm{A}}: \mu_{\mathrm{B}} \neq \mu_{\mathrm{M}} \neq \mu_{\mathrm{S}}$
b) $\mathrm{H} 0: \mu_{\mathrm{B}} \neq \mu_{\mathrm{M}} \neq \mu_{\mathrm{S}}$
$\mathrm{H}_{\mathrm{A}}: \mu_{\mathrm{B}}=\mu_{\mathrm{M}}=\mu_{\mathrm{S}}$
c) $\mathrm{H}_{0}: \mu_{\mathrm{B}}=\mu_{\mathrm{M}}=\mu_{\mathrm{S}}$
H_{A} : At least one mean is different.
d) $\mathrm{H}_{0}: \mu_{\mathrm{B}}=\mu_{\mathrm{M}}=\mu_{\mathrm{S}}$
$H_{A}: \mu_{B}>\mu_{M}>\mu_{S}$

Hypotheses

What are the correct hypotheses for testing for a difference between the mean aldrin concentrations among the three levels?
a) $\mathrm{H}_{0}: \mu_{\mathrm{B}}=\mu_{\mathrm{M}}=\mu_{\mathrm{S}}$
$\mathrm{H}_{\mathrm{A}}: \mu_{\mathrm{B}} \neq \mu_{\mathrm{M}} \neq \mu_{\mathrm{S}}$
b) $\mathrm{HO}: \mu_{\mathrm{B}} \neq \mu_{\mathrm{M}} \neq \mu_{\mathrm{S}}$

$$
\mathrm{H}_{\mathrm{A}}: \mu_{\mathrm{B}}=\mu_{\mathrm{M}}=\mu_{\mathrm{S}}
$$

c) $H_{0}: \mu_{B}=\mu_{M}=\mu_{S}$
H_{A} : At least one mean is different.
d) $\mathrm{H}_{0}: \mu_{\mathrm{B}}=\mu_{\mathrm{M}}=\mu_{\mathrm{S}}$
$\mathrm{H}_{\mathrm{A}}: \mu_{\mathrm{B}}>\mu_{\mathrm{M}}>\mu_{\mathrm{S}}$

F distribution and p-value

$$
F=\frac{\text { variability bet. groups }}{\text { variability w/in groups }}
$$

In order to be able to reject H_{0}, we need a small p -value, which requires a large F statistic.

In order to obtain a large F statistic, variability between sample means needs to be greater than variability within sample means.

		Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
(Group)	depth	2	16.96	8.48	6.13	0.0063
(Error)	Residuals	27	37.33	1.38		
	Total	29	54.29			

Degrees of freedom associated with ANOVA

- Groups: $\mathrm{df}_{\mathrm{G}}=\mathrm{k}-1$, where k is the number of groups
- Total: $\mathrm{df}_{\mathrm{T}}=\mathrm{n}-1$, where n is the total sample size
- Error: $\mathrm{df}_{\mathrm{E}}=\mathrm{df}_{\mathrm{T}}-\mathrm{df}_{\mathrm{G}}$
- $\mathrm{df}_{\mathrm{G}}=\mathrm{k}-1=3-1=2$
- $\mathrm{df}_{\mathrm{T}}=\mathrm{n}-1=30-1=29$
- $\mathrm{df}_{\mathrm{E}}=29-2=27$

		Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
(Group)	depth	2	16.96	8.48	6.13	0.0063
(Error)	Residuals	27	37.33	1.38		
	Total	29	54.29			

Sum of squares between groups, SSG

Measures the variability between groups

$$
S S G=\sum_{i=1}^{k} n_{i}\left(\bar{x}_{i}-\bar{x}\right)^{2}
$$

where n_{i} is each group size, $\overline{\mathrm{x}}_{\mathrm{i}}$ is the average for each group, \bar{x} is the overall (grand) mean.

	n	mean
bottom	10	6.04
middepth	10	5.05
surface	10	4.2
overall	30	5.1

$$
\begin{aligned}
S S G & =\left(10 \times(6.04-5.1)^{2}\right) \\
& +\left(10 \times(5.05-5.1)^{2}\right) \\
& +\left(10 \times(4.2-5.1)^{2}\right) \\
& =16.96
\end{aligned}
$$

		Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
(Group)	depth	2	16.96	8.48	6.13	0.0063
(Error)	Residuals	27	37.33	1.38		
	Total	29	54.29			

Sum of squares total, SST

Measures the variability across all observations

$$
S S T=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)
$$

where x_{i} represent each observation in the dataset.
SST $=(3.8-5.1)^{2}+(4.8-5.1)^{2}+(4.9-5.1)^{2}+\ldots+(5.2-$
$5.1)^{2}$

$$
\begin{aligned}
& =(-1.3)^{2}+(-0.3)^{2}+(-0.2)^{2}+\ldots+(0.1)^{2} \\
& =1.69+0.09+0.04+\ldots+0.01 \\
& =54.29
\end{aligned}
$$

		Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
(Group)	depth	2	16.96	8.48	6.13	0.0063
(Error)	Residuals	27	37.33	1.38		
	Total	29	54.29			

Sum of squares error, SSE

Measures the variability within groups:
SSE = SST - SSG

SSE $=54.29-16.96=37.33$

		Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
(Group)	depth	2	16.96	8.48	6.13	0.0063
(Error)	Residuals	27	37.33	1.38		
	Total	29	54.29			

Mean square error

Mean square error is calculated as sum of squares divided by the degrees of freedom.

$$
\begin{aligned}
\mathrm{MSG} & =16.96 / 2=8.48 \\
\mathrm{MSE} & =37.33 / 27=1.38
\end{aligned}
$$

| | | Df | Sum Sq | Mean Sq | F value | $\operatorname{Pr}(>F)$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| (Group) | depth | 2 | 16.96 | 8.48 | 6.14 | 0.0063 |
| (Error) | Residuals | 27 | 37.33 | 1.38 | | |
| | Total | 29 | 54.29 | | | |

Test statistic, F value

As we discussed before, the F statistic is the ratio of the between group and within group variability.

$$
\begin{aligned}
F & =\frac{M S G}{M S E} \\
F & =\frac{8.48}{1.38}=6.14
\end{aligned}
$$

| | | Df | Sum Sq | Mean Sq | F value | $\operatorname{Pr}(>F)$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| (Group) | depth | 2 | 16.96 | 8.48 | 6.14 | 0.0063 |
| (Error) | Residuals | 27 | 37.33 | 1.38 | | |
| | Total | 29 | 54.29 | | | |

p-value

p-value is the probability of at least as large a ratio between the "between group" and "within group" variability, if in fact the means of all groups are equal. It's calculated as the area under the F curve, with degrees of freedom df_{G} and df_{E}, above the observed F statistic.

Conclusion - in context

What is the conclusion of the hypothesis test?
The data provide convincing evidence that the average aldrin concentration
a) is different for all groups.
b) on the surface is lower than the other levels.
c) is different for at least one group.
d) is the same for all groups.

Conclusion - in context

What is the conclusion of the hypothesis test?
The data provide convincing evidence that the average aldrin concentration
a) is different for all groups.
b) on the surface is lower than the other levels.
c) is different for at least one group.
d) is the same for all groups.

Conclusion

If p-value is small (less than α), reject H_{0}. The data provide convincing evidence that at least one mean is different from (but we can't tell which one).

If p-value is large, fail to reject H_{0}. The data do not provide convincing evidence that at least one pair of means are different from each other, the observed differences in sample means are attributable to sampling variability (or chance).

(1) independence

Does this condition appear to be satisfied?
In this study the we have no reason to believe that the aldrin concentration won't be independent of each other.

(2) approximately normal

Does this condition appear to be satisfied?

(3) constant variance

Does this condition appear to be satisfied?

Which means differ?

Earlier we concluded that at least one pair of means differ. The natural question that follows is "which ones?"

We can do two sample t tests for differences in each possible pair of groups.

Can you see any pitfalls with this approach?

- When we run too many tests, the Type 1 Error rate increases.
- This issue is resolved by using a modified significance level.

Multiple comparisons

The scenario of testing many pairs of groups is called multiple comparisons.

The Bonferroni correction suggests that a more stringent significance level is more appropriate for these tests:

$$
\alpha^{*}=\alpha / K
$$

where K is the number of comparisons being considered.

If there are k groups, then usually all possible pairs are compared and K = $\mathrm{k}^{*}(\mathrm{k}-1) / 2$.

Determining the modified α

In the aldrin data set depth has 3 levels: bottom, mid-depth, and surface. If $\alpha=0.05$, what should be the modified significance level for two sample t tests for determining which pairs of groups have significantly different means?
a) $\alpha^{*}=0.05$
b) $\alpha^{*}=0.05 / 2=0.025$
c) $\alpha^{*}=0.05 / 3=0.0167$
d) $\alpha^{*}=0.05 / 6=0.0083$

Determining the modified α

In the aldrin data set depth has 3 levels: bottom, mid-depth, and surface. If $\alpha=0.05$, what should be the modified significance level for two sample t tests for determining which pairs of groups have significantly different means?
a) $\alpha^{*}=0.05$
b) $\alpha^{*}=0.05 / 2=0.025$
c) $\alpha^{*}=0.05 / 3=0.0167$
d) $\alpha^{*}=0.05 / 6=0.0083$

Which means differ?

Based on the box plots below, which means would you expect to be significantly different?

a) bottom \& surface
b) bottom \& mid-depth
c) mid-depth \& surface
d) bottom \& mid-depth; mid-depth \& surface
e) bottom \& mid-depth; bottom \& surface; mid-depth \& surface

Which means differ? (cont.)

If the ANOVA assumption of equal variability across groups is satisfied, we can use the data from all groups to estimate variability:

Estimate any within-group standard deviation with $\sqrt{ }$ MSE, which is $\mathrm{s}_{\text {pooled }}$
Use the error degrees of freedom, $\mathrm{n}-\mathrm{k}$, for t -distributions
Difference in two means: after ANOVA

$$
S E=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \approx \sqrt{\frac{M S E}{n_{1}}+\frac{M S E}{n_{2}}}
$$

Is there a difference between the average aldrin concentration at the bottom and at mid depth?

	n	mean	sd
bottom	10	6.04	1.58
middepth	10	5.05	1.10
surface	10	4.2	0.66
overall	30	5.1	1.37

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
depth	2	16.96	8.48	6.13	0.0063
Residuals	27	37.33	1.38		
Total	29	54.29			

$$
\begin{aligned}
T_{d f_{E}} & =\frac{\left(\bar{x}_{\text {bottom }}-\bar{x}_{\text {middepth }}\right)}{\sqrt{\frac{M S E}{n_{\text {bottom }}}+\frac{M S E}{n_{\text {middepth }}}}} \\
T_{27} & =\frac{(6.04-5.05)}{\sqrt{\frac{1.38}{10}+\frac{1.38}{10}}}=\frac{0.99}{0.53}=1.87 \\
0.05 & <p-\text { value }<0.10 \quad \text { (two-sided) } \\
\alpha^{\star} & =0.05 / 3=0.0167
\end{aligned}
$$

Fail to reject H_{0}, the data do not provide convincing evidence of a difference between the average aldrin concentrations at bottom and mid depth.

Pairwise comparisons

Is there a difference between the average aldrin concentration at the bottom and at surface?

$$
\begin{aligned}
T_{d f_{E}} & =\frac{\left(\bar{x}_{\text {bottom }}-\bar{x}_{\text {sufface }}\right)}{\sqrt{\frac{M S E}{n_{\text {botom }}}+\frac{M S E}{n_{\text {suface }}}}} \\
T_{27} & =\frac{(6.04-4.02)}{\sqrt{\frac{1.38}{10}+\frac{1.38}{10}}}=\frac{2.02}{0.53}=3.81 \\
p-\text { value } & <0.01 \quad \text { (two-sided) } \\
\alpha^{\star} & =0.05 / 3=0.0167
\end{aligned}
$$

Reject H_{0}, the data provide convincing evidence of a difference between the average aldrin concentrations at bottom and surface.

